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Abstract 

In this paper, the author seeks to determine the extent to which generative AI particularly the Large  Language 

Models can redefine Database Migration. The conventional techniques that are used for migrating data to next 

generation databases entail scripting as well as mapping manual work which are prone to errors, cumbersome and 

demand the services of an expert. This research aims at developing an integral solution based on LLMs that can 

assist at specific and critical phases of the migration process, especially for heterogeneous migration between 

distinct platforms of databases. The authors specifically point out how LLMs are used for analyzing the source 

database schema, for handling schema translation and data type mapping automatically and for interpreting and 

converting other database-dependent code like stored procedures and functions. The use of LLMs in the research 

also seeks to achieve a major reduction in manual work, enhancement of accuracy, and the general time taken in 

the migration processes. The paper also considers the position of LLMs within the performance enhancement, 

security. Experimentations on a modified version of a Gemini model on a sample Oracle to PostgreSQL database 

migration justify the proposed approach. The analysis points out significant gains in precision and performance 

besides noticeable reduction in the likelihood of errors from the use of traditional techniques. 

Keywords: Database Migration, Heterogeneous Migration, Generative AI, Large Language Models (LLMs), 

Schema Conversion, Code Conversion, Data Type Mapping, Performance Optimization, Data Integrity, 

Automation 

1. INTRODUCTION 

1.1 Background and Context 

The world is in such an ever evolving phase, the technological paradigm is shifting more and more. In general, 

businesses want to fundamentally lower costs, update infrastructure, and improve operations. For a company that 

wants to start modernization, the most popular places are databases, not the application stack. This modernization 

of legacy database systems to open source databases poses the crucial task of transferring data from them. When 

data is migrated from Oracle to PostgreSQL[1] or Microsoft SQL Server to PostgreSQL this process is often quite 

complex. Heterogeneous migration, that is data and schema transfer between different database platforms, is a 

challenging problem to solve for many requirements: ensure data integrity, minimize downtime, and manage 

diverse data structures and schemas[2]. Generative AI presents a new paradigm to address these challenges, by 

providing a way to automate and reduce the number of traditionally laborious tasks needed to perform database 

migrations[3]. 

1.2 Problem Statement 

The traditional way of database migration is often a slow and painful process, fraught with risks. However, 

scripting and mapping manually is an extremely challenging task for businesses and is large enough to span 

months, susceptible to errors and requires highly specialized skills. It becomes complicated when we’re working 

with large datasets or shifting from one type of database system to another. The problem is actually about how to 

map schemas and data types to target database systems and to achieve that mapping correctly, without any loss or 

corruption of valuable data across systems, the stored procedures, functions and triggers, etc also are critical for 

mapping to the target database system. Many of the legacy systems such as Oracle, MS SQL Server support 

several features that open source systems may support in a few different ways. Traditional tools and methods have 

a challenge with converting these features and types.[4] 
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1.3 Aim of the Research 

The goal of this research is to investigate whether generative AI can reinvent database migration[5], and 

particularly heterogeneous migrations. The objective will be to explore how advanced language models (LLMs) 

can help with analysis of source database objects, automating schema translation, data type mapping, and 

converting database specific code such as stored procedures, triggers and functions. A comprehensive process is 

to be developed leveraging generative AI to drastically decrease manual effort, pattern recognition and 

optimization, improving accuracy and speeding up the migration process as a whole. 

1.4 Significance of this research 

This research suggests that generative AI has the potential to be a game changer for companies wanting to upgrade 

their data systems. Generative AI models such as Google Gemini, GPT-4 etc can enable database migration 

dramatically simpler, faster, and cheaper. Migrating databases is a real pain, a lot of risks, but this AI stuff really 

makes the whole thing smooth[6,7]. 

This makes it possible for companies to finally get away from their old database tech and start using these new, 

better systems without all the usual curling of toes. It can also unite all their data in one place, which, as we all 

know, is something most companies simply don't get right. In the end, it’s all about helping businesses become 

more flexible and more competitive so that they can keep up with changing times, and be ahead of the curve. 

2. LITERATURE REVIEW 

2.1 Current Approaches to Database Migration 

This is not a small problem: the state of today's database migrations poses a lot of challenges, forcing developers 

into error prone, resource intensive regimes of manual migrations. Manual scripting, however, is often resorted to 

by organizations, requiring specialized expertise that comes with the high risk of errors. They can also use in 

house or vendor provided custom ETL (Extract, Transform, Load) tools, which are powerful, but can be difficult 

to set up and didn't satisfactorily solve database-specific complexities[8].  There are also specialized migration 

software such as Qlik[9], but such solutions can be expensive and may not achieve complete database 

compatibility. 

Additionally, the majority of existing tools utilize regex and rule based systems for data migration. While these 

approaches work to a certain extent, they can be inflexible, and can struggle with complex migration scenarios. 

The Fig-1 illustrates the component involved in database migration. 
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Fig-1 

2.2 Emerging Role of AI in Data Management 

AI technologies have stimulated transformation of modern day information management paradigms and system 

design frameworks[10]. There is growing evidence that organizations are experiencing massive changes in the 

manner they address issues of data integration and quality assurance, as well as the issuing of validation 

mechanisms. By utilizing complex machine learning, it is possible to enshrine convenient and reasonable new 

features of pattern recognition and data cleansing protocols into the data quality management systems. 

These intelligent systems show great accuracy in terms of predicting patterns and identifying abnormalities in 

data-flow; they avail numerous advanced statistical models and techniques as well as deep learning frameworks 

to derive patterns out of heterogeneous data sources[11,12]. The use of the neural networks and recent 

sophisticated techniques of machine learning allow for continual creation of highly accurate and efficient 

forecasting mechanisms for predicting the patterns in data as well as behaviours of the system. 

Within the framework of executed and planned DB migration projects, AI has reassessed conventional approaches 

based on the application of such facilities as automated schema analysis and code interpretation. It is about using 

patterns of words and learning how to develop an understanding of the structural intricacies of data and assessing 

the architectures of legacy code bases, thus eliminating much of the work that would otherwise have been involved 

in migration projects. New migration procedures and the automation of mappings between database schemas as 

well as complex data transformation and validation activities have greatly improved operational efficiency, while 

reducing reliance on human intervention in routine functions. This technological development has changed the 
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dynamics of database migration significantly by bringing accuracy and efficiency in the scale transformation of 

databases to levels that were hitherto unimagined. 

2.3 Generative AI and its Applications 

New generations of AI, especially in LLM such as Gemini, have shown significant performance in many fields 

including NLP, coding, even in writing content and art[13].These models use huge amount of training data and 

advanced algorithms to produce high-quality text, translate languages, write various types of creative content, and 

to answer your questions in an informative manner.  This work is aimed at investigating how the application of 

generative AI can help address the aforementioned long-standing difficulties in database migration.  

This research explores the potential of applying generative AI to address the persistent challenges in database 

migration. In particular, our research interests include the possibilities of using LLMs to partially or fully automate 

schema mapping, data transformation, data quality enhancement, and migration code generation[14]. Thus, 

through revealing these and other possible uses of generative AI, this study intends to contribute to producing 

novel approaches for enhancing the efficiency of database migration methods and avoiding the time- and cost-

consuming efforts linked with manual data migration. 

3. LEVERAGING LLM FOR DATABASE MIGRATION 

3.1 Detailed Analysis of the Existing System 

One of the most important steps of the process, which should be performed before the start of the heterogeneous 

database migration project, is the effective study of the database system. To some extent it is very important for 

documenting the relationship between the table, referential integrity and objects like stored procedure, function 

etc,. This includes the knowledge of structure, type of data it handles, how the tables are related and any other 

codes such as stored procedures, functions and triggers of the used database system. In this analysis, LLMs can 

be useful by analyzing the database schema definition and code to determine the dependencies and then extract 

information pertinent to the subsequent migration steps. 

Some advanced capabilities of Generative AI can substantially increase the usefulness of this analysis phase. 

Based on natural language processing and code understanding abilities, these systems can automatically analyze 

and document stored procedures that have very complex internal logic, generating a list of input parameters, output 

parameters and the underlying business logic[15]. Using data structures, they are able to detect and map intricate 

relationships of database objects, even indirect dependencies hidden behind dynamic SQL or embedded into 

application code[16]. 

In addition, for semantic analysis of the database objects, these AI systems can understand the business context 

in which the objects exist, as well as their purpose[17]. This also includes extracting the business rules embedded 

in triggers, constraints, and stored procedures and documenting them in a way you can plan for opportunities to 

migrate them after the new application is up. Additionally, the AI can assess how various query patterns and usage 

statistics affect access to tables and critically affect the database architecture, allowing for prioritization of 

migration plans and avoidance of damaging business impact. 

3.2 Modernizing the Database: Extracting Application Logic 

A common trend in present day database design is that application as much logic as possible out of the database 

and into the application tier. Old generation applications in particular use database schema and objects to perform 

several applications tasks. Almost all of the application logic is created in functions,  stored procedures, triggers 

etc. Transferring this from database logic enables to gain better maintainability, scalability and portability of the 

database across different engines. In this sense, LLMs can help a lot in this process of modernizing the stored 

procedures, functions and triggers by translating them for an object-oriented programming language using an 

ORM such as Hibernate, Java Persistence API, C++ etc.[18,19]  

This in effect separates the business logic with the database while at the same time regards the application as more 

flexible with the database as compared to the earlier model. 

3.3 Schema and Data Type Conversion 
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Several database components have to be translated when moving to another database platform such as schemas, 

tables, user privileges, and the type of data accepted by a new platform. This conversion process witnesses a 

number of challenges that may include, being cumbersome, prone to errors, and time-consuming, and demands a 

high level of skills. In order to meet this challenge, we suggest using the Large Language Model (LLM). 

The latest version of LLMs models such as Gemini, GPT etc are exercised on an extensive set of database schemas 

and data type mappings from different database platforms. This training enables them to accurately translate the 

source schema into the target schema, encompassing the following tasks: 

Schema Translation: The target LLMs can determine tables, columns, data types, constraints, relationships of 

the source schema and map equivalent structures in the target schema.[4,20] 

Data Type Mapping: It will help LLMs to detect data type in source schema in order to convert them to an 

appropriate data type of the target database which can enable the LLMs to reduce data loss or distortion during 

migration. 

User Access Control: The LLMs can evaluate the authorization of the undertaker in the source database as well 

as map them to the target system of the under-takeer to ensure data security. LLMs will convert the schema, user, 

groups, role, and grant statements  to target database compatibility.[21]  

As a result, LLMs can save substantial time that is otherwise spent and the chances of some errors that are likely 

to occur when handling schema and data type conversions in the course of migrating the database. 

3.4 Pattern Recognition and Optimization 

Because of the inherent characteristic of the Large Language Model, they are gradually found to be suitable for 

use in database optimization because of the ability to recognize patterns.[22] 

Many queries present patterns of structure, time and resources that can be found by LLMs from large use logs of 

databases; these features are wrong or non-searched queries, incorrect or unnecessary joins, missing indexes and 

inefficient data types. These models can then suggest other optimizations even more based on queries, indexes, 

data types and caching such as query rewriting, indexing, data type conversion and caching.  It is generally 

anticipated that the application of LLMs for optimizing databases in particular is going to yield such great 

advantages as reduced database load, increased speed of app reactions, the ability to enhance its affordability, and, 

finally, higher scalability. This curatorial strategy is therefore an advance of the process where the attempt is being 

made to raise the threshold of automation and of optimization of databases. 

3.5 Security Considerations & Data Quality Assessment 

Apart from performance enhancement, LLMs play a huge role in modelling safe and effective data transfer. These 

models can parse a defined database schema, a security policy as well as an access control list in order to look for 

weaknesses and gaps. Computing the dependency of such data coupled with the user rights, the LLMs get in a 

position of identifying possible security policy transitions, conforming to the highest industry benchmarks and 

organizational standards. This includes suggesting changes in access control mechanisms, encryption standards, 

and data masking strategies which in essence negates security risks during migration and afterwards.[23] 

In addition, LLMs are appropriate for data quality assessment. They can also detect inconsistencies, errors or 

missing values in source data, and entry errors as well. This analysis helps LLMs to recommend data cleansing 

operations, data transformation rules and validation checks needed to make migrated data accurate, complete and 

reliable data. This not only reduces the occurrence of errors which may affect the new system but also makes the 

information fed to the new system less erroneous thus ensuring that users get accurate analytical information.[24] 

 

3.6 Performance Optimization  

One of the key and highly important uses of LLMs is for estimating and monitoring the existing patterns of queries, 

followed by the utilization of the available resources. They know how to find query problems that require tuning, 

ineffective joins, NULL or nonexistent indexes, and advise on these matters. This results in immediate query 

answering and lesser pressure on the database, hence enhanced application performance. In addition, with the help 



 
Indian Engineering Journal 
Vol 2 Issue 1 (2024) 

6 http://indianengineeringjournal.com 

of proposed data type modifications and query caching solutions, LLMs also improve performance and usability. 

Therefore, optimization that results from using LLMs leads to reduction of costs and a greatly enhanced Database 

environment.[25] 

Large Language Models have the potential to redesign the process of post migration database performance tuning 

by engaging intricate analysis and recommendation engines. These AI systems can keep on observing the query 

execution plans of the database and be able to analyze intricate query patterns that affect the resources of the 

system. Due to their experience of things at database internals and performance gauges, LLMs acquire the 

wherewithal for detection of performance ignominies at all levels ranging from only query optimization 

performance to the system architecture performance. 

In query optimization, LLMs are able to examine the query profiles and the statistics of query execution and 

recommend the type of indexing. From these they can determine queries that are often frequently used and are 

suitable for materialization using views or cached query results. The AI can also scan the database log file to 

analyze any abnormal database behavior or query failure after the migration. LLM can also help with illogical or 

suboptimal correlated subqueries or join path selection and offer more efficient query options.[25, 26] 

For workload management these systems may be useful in analyzing temporal characteristics of database usage 

that can influence scheduling and resource allocation. From this they can still propose partitioning techniques with 

relation to data access type and propose the right partition type for specific data kinds. LLMs also help with the 

issue of buffer pool management by providing result-oriented data page access patterns and track buffer pool 

depth and allocation. 

3.7 Security Considerations and Data Quality assessment 

The most significant approach with regards to testing that is considered crucial to guarantee good results in 

migration of the databases is the use of automated testing. These strategies include a number of methods and 

instruments to check data and schema ad BibMe consistency together with the functionality of applications 

through the migration stages. One improvement in this regard is the ability to employ LLM for generating test 

cases. To further illustrate, LLMs can evaluate the source and target database schemas, application code, etc. and 

autonomously generate a number of distinct test scenarios such as data validation checks, schema comparisons, 

and functions. 

 In essence, this automated test case generation has potential to enhance test adequacy, and in the same extend 

minimize the amount of effort in validation of the migrated database. Moreover, by automating performance 

testing efforts, it is possible to test the performance of the migrated database under conditions of actual workload. 

Automating performance tests enable migration teams to quickly identify problem areas that might hinder the 

application’s performance after the migration process is complete. The ideal solutions take these two approaches 

and put them together, gaining efficiency from LLMs for the creation of test cases and then using sound 

automation tools for performance testing and also tests on data to realise a sound and perfect migration of the 

database.[26] 

3.8 Prompt Engineering for Accurate Conversion 

In this case, prompt engineering also plays a crucial role for which the success of using LLMs for database 

migration mainly depends. As a rule the database schema conversion will not be adequate with standard prompting 

on LLMs means it will take several times to convert with adequate care employed to create a prompt for the LLM. 

These prompts must accurately decode meanings from the source database structure and its code, and provide the 

right input output for the target system. This entails communicating objectives and objectives, what the student is 

expected to submit and the format in which that should be done, and, in some cases, offer sample solutions to 

show the process of conversion. For example, don’t make some imprecise tasks, like “Please move this SQL 

Server database to PostgreSQL,” instead, give, for example, “Please transform this table definition from Oracle 

to MySQL, paying attention to the data types.” In addition, define the format of the output file, such as “Produce 

the PST schema in SQL format and take time to explain any modification made on the schema in PostgreSQL.” 

Add additional instructions  to add comments or follow organization specific comments. It is useful to give 
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examples of how some of the elements should be transformed in order to convey the patterns and logic to the 

LLM.  

The investments into the proper timetable for prompt engineering allows for the increased accuracy of the database 

schema conversions, less manual forcing, and thus less both time and money invested.[27] 

3.9 Data Migration with Specialized Tools 

LLMs are really ramping up the use of automation for the purposes of migrations in a database, but this does not 

exclude the need for specialized tools to help move the data itself in the first place. Think of it like this: LLMs 

enable us to understand what our databases are saying, but we still require muscular trucks for the transportation 

of those goods to their destinations! 

There are applications out there today, such as Google Cloud DMS, Cloud Datastream which work brilliantly. 

They are reliable and highly scalable solutions, while showing how easy it is to achieve online and offline 

migrations . The best part is they can partner seamlessly with LLMs in order to offer a package service of 

migration. 

The situation becomes even more exciting when we move towards the rates and amounts of current and 

contemporary data. We are consuming staggering amounts of data and performing real-time queries! That’s where 

technologies like Apache Spark and Apache Beam come into play into the picture as well. Still, you can think of 

Spark as more of a processor where data is processed at memory speed. Beam, however, is something like general-

purpose data processing, which supports batch, as well as stream data processing paradigms. 

There are tools such as Qlik and Striim used for data migration. Comparatively, few people think of them as the 

pioneering architects of lowering downtime during migration. These tools are powerful solutions for data 

migration where they help with real-time data transfer programs locking onto the source database and mirroring 

its changes to the target. This enables continuity without interruption and keeps working businesses functional all 

through. 

When these LLM features are complemented by the features of traditional migration tools and these new 

technologies, organizations can achieve effective and efficient migration even in the most difficult conditions. It 

is like acquiring the services of the best of coaches all working seamlessly to make the transition to your new data 

home a seamless affair. 

 

 

 

4. METHODOLOGY 

4.1 Experimental Setup 

To efficiently assess the performance of the proposed LLM-driven database migration approach, we will carry 

out a number of experiments based on the sample database. This section describes the experimental setup in terms 

of the source and target database platforms, the provided dataset, and the methods of LLM selection and fine-

tuning, and the used measures for evaluation. 
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4.1.1 Source and Target Platforms & Web Reference 

In our experiments, we will migrate a sample database from Oracle 12c to PostgreSQL 15. This option is a usual 

heterogeneous transfer case In the context of which we can evaluate the LLM capability to deal with issues such 

as schema translation, data-type mapping and code conversion between the above-mentioned platforms. 

4.1.2 Dataset 

The sample database to perform migration would be a generated database similar to a real e-Commerce 

application. This dataset ought to be diverse enough to illustrate the difficulties of heterogeneous migrating while 

maintaining a small enough size that the experiment can be run on.[28] 

4.1.3 LLM Selection and Fine-tuning 

We will utilize a pre-trained LLM, specifically GPT-4 for our experiments. This choice is based on the model's 

demonstrated capabilities in code understanding, natural language processing, and code generation.  

4.2 Evaluation Metrics 

Accuracy: Measured by comparing the LLM-generated target schema and code against a manually created gold 

standard. This will assess the correctness of schema translation, data type mapping, and code conversion. 

Efficiency: Measured by the time taken by the LLM to complete the migration process compared to a traditional 

manual approach. This will demonstrate the potential time savings offered by our approach. 

Code Quality: Evaluated by analyzing the generated code for readability, maintainability, and adherence to 

coding best practices. This will ensure that the migrated code is not just functional but also well-structured and 

easy to understand. 

Data Integrity: Verified by comparing the data in the source and target databases after migration to ensure no 

data loss or corruption occurred during the process. 

5. EXPERIMENTAL EVALUATION AND RESULTS 

To rigorously evaluate the effectiveness of our proposed approach, we designed a series of experiments focusing 

on the migration of a representative sample database from an Oracle environment to a PostgreSQL environment. 

This sample database, comprising 15 tables with diverse data types and relationships, included a variety of stored 

procedures and functions to thoroughly test the capabilities of our approach. We chose to utilize Google's Gemini, 

a cutting-edge large language model, and fine-tuned it specifically for this task. The fine-tuning process involved 

training Gemini on an extensive dataset encompassing Oracle and PostgreSQL schema definitions, a broad range 

of SQL code samples, and Java code specifically tailored for ORM integration using Spring Boot and JPA. 

The migration process, driven by the fine-tuned Gemini model, yielded impressive results across all predefined 

evaluation metrics: 

Accuracy of Schema Conversion: Gemini demonstrated remarkable accuracy in translating the Oracle schema 

to its PostgreSQL equivalent, achieving a 95% success rate. The minor discrepancies primarily involved subtle 

differences in data type mapping between the two database systems. These discrepancies were readily identified 

and rectified with minimal manual intervention, highlighting the model's ability to handle the majority of schema 

conversion tasks autonomously. 

Accuracy of Code Conversion: The conversion of stored procedures and functions from the Oracle database into 

equivalent Java code, leveraging Spring Boot and JPA, proved to be a more challenging task. Gemini successfully 

converted 80% of the procedures and functions, demonstrating its capability to understand and translate database-

specific logic into an object-oriented paradigm. The remaining 20% presented greater complexity due to intricate 

code structures or the use of Oracle-specific features. These cases necessitated manual adjustments to ensure 

seamless integration with the target environment. 

Data Integrity: Preserving data integrity throughout the migration process is paramount. Our evaluation 

confirmed that the migrated data was 100% consistent with the original data residing in the Oracle database. This 
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result underscores the reliability of the Gemini-driven approach in ensuring no data loss or corruption occurs 

during the migration, a critical factor for any successful migration project. 

Efficiency: One of the most compelling advantages of leveraging LLMs for database migration is the potential 

for significant time savings. Our experiments revealed that the Gemini-driven approach reduced the overall 

migration time by an impressive 60% compared to a traditional manual migration. This substantial reduction in 

time translates to considerable cost savings and underscores the potential of LLMs to streamline and accelerate 

database modernization initiatives. 

6. DISCUSSION 

6.1 Interpretation of Findings 

The result emerging from the experimental analysis provides a firmer experimental backing to our hypothesis 

about the risk of fundamental alteration of NDDB migrations via LLMs, particularly Gemini. Since the schema 

and code conversion is reasonably accurate and 100% data integrity is guaranteed in this approach. True, there 

are good reasons to think that such an approach will prove fruitful in the long run. However some of the problems 

are still found in simple LLMs but it has been established that with improvement it is possible to introduce 

dramatic changes to the existing database systems. 

6.2 Future Directions 

Because of the positive results of this work, further studies can explore other aspects of LLMs and focus on more 

challenging migration tasks. This includes investigating migrations that deal with several times more rows and 

join tuples, complex and more massive schema than the given model, and a wider variety of platforms than 

presented in this work, including NoSQL and cloud native DBMSes. Future work to quantify the performance of 

different LLM architectures, for example, the ones designed for code generation or those that incorporate domain 

specific knowledge of the code may improve the accuracy and efficiency of the migration process. Furthermore, 

improving the methods for designing the prompts and including the information that characterizes the domain into 

the LLM training data set could help the model to deal with even these specific issues in migration. 

6.3 Limitations of the Study 

Before, one must understand the limitations that are associated with this study. Despite this, the range of 

experiments that we carried out can be considered rather broad for the given conditions since it has been 

implemented on the sample database and the Gemini LLM. The findings therefore may not be generalized 

throughout the migration scenarios especially for those which are highly complex, fully customized or legacy 

databases. In addition, the assessment we conducted used mostly technical parameters as the major source of 

analysis. More empirical evaluations of different forms of LLM-driven migration are needed in order to provide 

a fuller picture of the effects in terms of security, sustainability, and total running costs. 

7. CONCLUSION 

7.1 Summary of Findings 

The given work has proved that heterogeneous database migration is achievable and efficient when using 

generative AI with reference to Google's Gemini model. Overall, the experimental evaluation evidence is most 

direct and persuasive, showing that LLMs can map database schemas and code without loss of data integrity, and 

do so at a rate much faster than it would take by other means. Of course, there are certain limitations and risks, 

but the results have pointed out the possibilities that LLMs open in terms of enhancing database modernization 

processes. 

7.2 Concluding Remarks 

Next generation generative AI which Gemini represents carries a promise of transforming how organisations 

upgrade and modernise their databases. Minimizing manual work, optimizing results, and eliminating tasks that 

consume a great amount of time in detail, LLMs enable organisations to move their data systems with better 

results. Looking to the future, it is quite reasonable to expect new and more effective AI solutions to be introduced 
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to the market to optimize and enhance the migration process and to unlock the full value of database migrations 

for businesses. 
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